ISI BANGALORE

B Math Algebra II

Notes.

(a) Justify all your steps. You may use any result proved in class unless you have been asked to prove the same.

- (b) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers, $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.
- (c) By default, F denotes a field.

1. [8 points] Give an example of a 2×2 matrix over \mathbb{Q} which is not upper triangulable over \mathbb{R} .

2. [27 points] For the matrix A given below, find the characteristic polynomial, eigenvalues and eigenvectors (over \mathbb{C} if necessary). Find an invertible 3×3 matrix X such that XAX^{-1} is a diagonal matrix. Using this, compute A^{100} .

 $A = \begin{pmatrix} 0 & 1 & -1 \\ -10 & 11 & -1 \\ -10 & 10 & 0 \end{pmatrix}$

3. [13 points] Give an example of 2 square matrices A, B of the same size such that the characteristic polynomials of A, B are equal and their minimal polynomials are also equal, but A is not similar to B. Justify your answer.

4. [13 points] Prove that over any field F, and for any integer n > 0, an $n \times n$ matrix of rank 1 is upper-triangulable. Show that for any n, there is an $n \times n$ matrix of rank 1 which is not diagonalizable.

5. [13 points] Find the 3×3 matrix A over \mathbb{R} such that multiplication by A induces a rotation of \mathbb{R}^3 with axis $[1, 0, 1]^t$ and angle $\pi/2$ (with respect to a positively oriented orthonormal basis).

6. [13 points] In each of the following cases give an example of a symmetric 2×2 matrix A over \mathbb{R} having all nonzero entries satisfying the property given below. Also find an orthogonal basis for the symmetric bilinear form on \mathbb{R}^2 given by $\langle v, w \rangle := v^t A w$.

- (i) A is positive definite.
- (ii) A is neither positive definite nor negative definite.
- 7. [13 points] Supply proofs of the following statements proved in class.
 - (i) Any real symmetric matrix has real eigenvalues.
 - (ii) If A is a normal matrix over \mathbb{C} and $v \in \mathbb{C}^n$ is an eigenvector, i.e., $Av = \lambda v$, then $A^*v = \overline{\lambda}v$.

April 2016

100 Points